Current Records

Here is a chart summarizing the best/smallest sets known for various player counts. Entries in red are known to be the best (lowest) possible values achievable (generally through exhaustive computer search).

Players Smallest LCM Fewest Total Sides Smallest Largest Die Fewest Sides (“Nice”* Set)
2 2 (2d2) 3 (aba) 2 (aba) 8 (2d4)
3 6 (3d6)
R. Ford
12 (d2+d4+d6) 6 (various) 14 (2d4+d6)
4 12 (4d12)
R. Ford
30 (d4+d6+d8+d12)
E. Harshbarger
9 (d6+2d8+d9)
E. Harshbarger
30 (d4+d6+d8+d12)
5 60 (5d60)
P. Meyer
164 (d20+4d36)
B. Cohen
36 (d20+4d36)
B. Cohen
222 (d30+4d48)
P. Meyer
6 360 (d20+5d360, d36+5d360, d20+d120+4d360)
M. Purcell
746 (d80+d90+4d144)
E. Harshbarger
144 (d80+d90+4d144)
E. Harshbarger
?
7 10080 (7d10080)
P. Meyer
5316 (d480+d540+d840+4d864)
E. Harshbarger
864 (d480+d540+d840+4d864)
E. Harshbarger
Impossible
8 ? 32736 (d840+d2880+d3240+d5040+4d5184)
E. Harshbarger/B. Hearn
5184 (d840+d2880+d3240+d5040+4d5184)
E. Harshbarger/B. Hearn
Impossible
9 ? 3844224 (d7560 + d25920 + d29160 + d45360 + 4d46656 + d89600)
B. Hearn
89600 (d7560 + d25920 + d29160 + d45360 + 4d46656 + d89600)
B. Hearn
Impossible

* A “nice” set comprises dice that are all isohedral shapes that are not lenses or rolling logs (“nice” is definitely subjective, since 2n-lens-shaped dice with small n values are definitely functional and pleasing enough for some folks' tastes). Also, a d2 (a coin) is not considered “nice”, but that is purely the opinion of this author (Eric). “Nice” side counts, therefore, are the following: 4, 6, 8, 12, 20, 24, 30, 48, 60, and 120.